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Rhythmic hopping in a one-dimensional crisis map
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It is shown that a time-evolving strange attractor formed by a dynamical contact of two logistic maps, a
special case of the so-called interior crisis, can generate rhythmic hopping with a chaotic fluctuation between
two domains on which the individual logistic maps are defined. A variety of distributions of the hopping time
have been obtained with different choices of an evolution parameter in the map. The physical mechanism and
the conditions for the rhythmic hopping are discus$&d4.063-651X%96)00107-9

PACS numbeps): 05.45+b, 02.50.Wp, 05.46:j, 87.10+€

It is widely argued in the literature of chapg| that some {x,|n=0,1, ...} starting from each domain remains there
rhythmic phenomena in nature, such as various physiologicalnd undergoes strongly chaotic motionalf4, on the other
rhythms like the heart bed2-4], can be correlated with hand, the two otherwise disjoint regions are brought into
fluctuation. The essential question is then whether or not thigontact with one another, and a trajectory can wander over
fluctuation might be chaos rather than random noise. Notgnhe entire range in a chaotic manner. This is merely a special
that chaos implies deterministic randomness and complexityase of the so-called interior crisis, first proposed by Gre-
and is a concept counter to that of regularity and periodicityyogj, Ott, and Yorkd22—24.

[1]. We show in the present report an example of a very ere a feature of time evolution is introduced into the
simple chaotic element that can generate a rhythmic motion,p ;e map by setting(t) =4.0+t9, wheret is a discretized

Periodic or quasiperiodic motions have been studied €X%ime measured in a unit imat (actually At=0.0D. It is in

tensively in nonlinear dynamid¢$] using the notions of limit '&he pioneering work of Lasota and Mackég4] that an

cycle, torusz resonance, frequency locking, and so on. evolving map was considered for the first time. They studied
number of simple differential equations are known that have

limit cycle solutions to simulate neural oscillatig6]. In an evolving logistic map~hav,|ng a sl_owly _t|me depe_ndent
some chaos, strong periodic components can be found in grameter such aa(t):r_+e t tha_t is defined only in the
power spectrum in which almost discrete line spectrums ar omainL =[0,1], from which a trajectory escapdwith no
embedded in a “continuous” ban@.g., the Resler attractor return) gventually after the value of the _paramaeexceeds
[7] and in the Haon-Heiles systerfi8]). A periodic system 4.0. T.h's phenqmenon was c_aIIed eXtIn(':t.IEim,Z(] an_d a
on the other hand can become chaotic through a sequence %?autlful analysis on the survival probability of a trajectpry
frequency locking in response to delivery of a periodic per_ln L=[0,1] was performed. In contrast to the case of extinc-
turbation[9—11]. Conversely, as a bifurcation parameter is
changed, chaos can be replaced by periodicity, resulting in
periodic windows appearing in the bifurcation diagram
[1,12].

Here we study a rhythmic hopping between two disjoint
domains on which our one-dimensional map is defined.
There are several examples in the literat{it€&—2Q that
have investigated the statistical properties of hopping or the
related phenomenon of “escape” or “extinction14,20.
However, none of the prior works studied circumstances in
which the motion had a strong periodic component
(“rhythm™).

Our system, probably the simplest chaotic attractor that
can indeed generate rhythm, is constructed as follows. Take
a domain[0,2] in a one-dimensional space, two subdomains
of which are denoted as=[0,1] andR=[1,2]. Let us con-
sider a mapx,.;=F(X,) consisting of two logistic maps
[21] such that
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FIG. 1. A map causing an interior crisis. Unlike the ordinary
See Fig. 1. Similar one-dimensional maps have been studigéixed) crisis, the diameter of the escaping region grows as a func-
previously [16,18,19. When a=4.0, a trajectory tion of time.
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FIG. 2. The trajectories versus tim@) A fixed crisis with the parameter=4.001.(b) A breathing crisis of(t) = 4.0+ t% with d=20.0.

tion, our map brings a trajectory back froR=[1,2] to  one can count a distributiofor frequency P(T) of the life-
L=[0,1], and vice versa. For example, let a trajectory startime. Figure 3 shows three different classesP¢fl); (a) a
from an arbitrary point in, say, the domain witha=4.0. As  fixed crisis witha=4.005,(b) a breathing crisis witll=2.0,
soon as it begins to move, we skt)=4.0+t". The positive  and (c) a breathing crisis withd=20.0. These distribution
exponentd is fixed. Since the gate diameté(t) through  functions reflect the statistical nature behind the dynamics,
which the trajectory can escape from domeigrows larger  and are identified as, respective(g) Poissor{14,19,20,28

(see Fig. 1, the trajectory eventually jumps into the neigh- (b) wigner, and(c) Brody distributiong1,25]. Later we will
boring subdomain after some finite lifetime. As soon as theyhow mathematically that this assignment is indeed the case.

trajectory gets into the neighboring domain, everything isag il be deduced from the figure, the distribution becomes
rese;t=0 (the usual accumulated time is denoteddynd g5 e a5 the evolution parametérgets larger. For the

a(0)=4.0 (the gate is closgd Then, the trajectory resumes choices ofa(t) shown in Fig. 3, it follows that a longer mean

its course and the gate begins to open as before. In this wa fetime is associated with less fluctuation R(T), that is,
the present system generates a behavior of the so-called 'fore like a periodic motion. In particular, the longer side of
newal process. We now coarse grain the time serie P NP ' 9

Ix,|n=0,1 } by assigning the values toor R depending ﬁwe tails in the distributions becomes less marked for the
n I

on the domain where the trajectory stays, thatLRL- Iarggrd system. i i
RLR... . The position of the trajectory in each piecelof Figure 4a) shows the power spectrum of the time series
or R changes in an approximately random manner. Surpris®f LRLRLR. .. ford=2.0, and 4b) for d=20.0. Itis quite
ingly, however, it can make a rhythmic hopping between thé:legr that the breathing crisis Wlth:Z0.0 is sharply peaked,
two domains in spite of the fact that no source of periodicwhile for d=2.0 the spectrum is much more broadband.
machinery has been installed. These spectra clearly indicate that the preseapthmis still
Figure 2 shows two trajectorieg7) (~=nAt), for which ~ chaos The second and third peaks observed in Fit) 4
(a) a is fixed at 4.001 an¢b) a(t) =4.0+t% with d=20. We  correspond to the third and fifth harmonics, respectively, of
distinguish these two cases by terming the former and théhe fundamental frequency. They arise because the coarse-
latter, respectively, a fixed crisis and a breathing crisis. Thegrained time seried RLRLR... forms a “rectangular”
points{x,/n=0,1,..} have been connected with straight lines wave[see Fig. 2b)].
in the figure. The initial conditiong, are randomly selected. The physical meaning of the present system is very clear.
A very clear distinction is noticed immediately in the two A deterministic diffusion process is materialized in the logis-
panels: The fixed crisis displays a chaotic motion, whereatic map fora=4.0, before the hopping takes place. Further-
the breathing crisis, though still somewhat chaotic, is muchmore, the invariant density of the logistic map ®+4.0 is
more regular. We shall thus call it “soft rhythm.” These proportional to[x(1—x)] 2 in [0,1.0 (see Ref.[1(a)]),
characteristics are quite generic, although the measure of thehich implies that a trajectory visits most of the ranges in-
exceptional trajectories have not been determined. cluding the gate area with similar chances. On the other
The lifetime T is defined as the length of time that a hand, the functiora(t) = 4.0+t makes the channel open so
trajectory remains in the subdomainor R. Sampling an that the diametef(t) is f(t)=t¥2(4+t% Y2~t¥22. Thus
arbitrarily selected trajectory like the one shown in Fih)2  the chance for a trajectory to pass through the gate is typified
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FIG. 3. The distributions of the lifetimes for both the domaii@ A fixed crisis ofa=4.005. The exponential curve represents the theory
(Poisson distribution while the “experimental” values, which are connected with a dotted line, deviate from the theory in the short time
region.(b) A breathing crisis ofa(t)=4.0+t% with d=2.0. The Wigner distribution expected from the thediack squaresis so close to
the numerically obtained valuéwhite squaresthat they are almost indistinguishable) A breathing crisis withd=20.0. The experimental
values(crosses are well represented in terms of the Brody distributioincles.
by this single evolution parametdrinto three cases: the gate f(t)=t%? can lead to soft rhythm as well, provided that the
diameterf (t) is (a) constant in timgfor d=0.0, Poisso)j (b) above condition is satisfied. The present diffusion-gating
proportional to the timéfor d=2.0, Wignej, and(c) accel- mechanism reminds us of single ion-channel recordings
erated as the time passésr d>2.0, Brody. It turns out that  [2,3,26,27. It would be necessary, however, to combine or
only the third case leads to the soft rhythm. In other wordsembed these rhythmic elements in a large network system in
the rhythm can beat only under a condition that the gaterder to simulate a complicated macroscopic system.
begins to open very slowly in the early stage and later the Next we consider how the distributions B T) in Figs.
diameter becomes wider quickly. In fact, it has been con3(a)—3(c) can be understood on the basis of the above physi-
firmed numerically thaf (t) which is not exactly of the form cal mechanism. Since the chaotic nature of the logistic map
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FIG. 4. Power spectra arising from the rhythmic moti/fRLRLR. . . . (a) A breathing crisis withd=2.0. (b) The same as ifa) but
with d=20.0.
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ensures that a trajectory visits any place with similar chancewheref(jAt)At<1 has been used. Equati(8) is rewritten
[1], P(T) is expected to be governed only by the rate ofas

increase of the diameter of the gate. If this is not the case,

one should take account of the anisotropic distribution of the ¢

invariant density of a map under study. L&ft)At be a g(t)zf(t)exp< —f ds f(s)), (%)
(unnormalized probability for a trajectory to undergo a hop- 0

ping in the time interva[t,t+ At], since the probability of

hopping should be proportional to the diameter of the gat§nserting  f(t)~t%¥%2, we finally have g(t)=
f(t). Also, letg(t)At be the probability for which hopping  {d/2gy —(42)+1/(4+ 2)]. Thusd=0 [Fig. 3@], d=2 [Fig.
does not take place until time (assuming the preceding 3(1)] and d=20 [Fig. 3¢)] give, respectively, the Poisson,
hopping took place at=0) and does irt,t+At]. Then it \yigner, and Brody distributions. As can be confirmed in
follows that: these figures, the numerically obtained distributions lie very

—r1_ _ close to the theoretical curves.
gOAL=[1=F(O)AL1-F(ADAL] We have constructed a simple element of chaos that can

X[1—f(2At)At]---{1— f[(N—1)At]At} generate a soft rhythm by allowing two logistic maps to
come into contact dynamically, which we have called the
xf(t)At, (2)  preathing crisis. The mechanism and conditions giving rise

to the soft rhythm have been discussed. The present study

with At=t/N and that suggests that the dynamical contact of the arbitrary strange

N-1 sets (attractor$ can generate various types of rhythm. Al-
Ing(t)=lim >, In[1—f(jAt)At]+In f(t) though the focus of the present research has been placed on
N—w J=0 an aspect of chaotic dynamics, particularly on the new prop-
. erty of the interior crisis, the present system might lay a basis
~_ f ds f(s)+1In f(1), 3) to interpret many renew_al processes s.uch as earthquake and
0 rhythmic events in physical and biological sciences.
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