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It is shown that a time-evolving strange attractor formed by a dynamical contact of two logistic maps, a
special case of the so-called interior crisis, can generate rhythmic hopping with a chaotic fluctuation between
two domains on which the individual logistic maps are defined. A variety of distributions of the hopping time
have been obtained with different choices of an evolution parameter in the map. The physical mechanism and
the conditions for the rhythmic hopping are discussed.@S1063-651X~96!00107-9#

PACS number~s!: 05.45.1b, 02.50.Wp, 05.40.1j, 87.10.1e

It is widely argued in the literature of chaos@1# that some
rhythmic phenomena in nature, such as various physiological
rhythms like the heart beat@2–4#, can be correlated with
fluctuation. The essential question is then whether or not this
fluctuation might be chaos rather than random noise. Note
that chaos implies deterministic randomness and complexity
and is a concept counter to that of regularity and periodicity
@1#. We show in the present report an example of a very
simple chaotic element that can generate a rhythmic motion.

Periodic or quasiperiodic motions have been studied ex-
tensively in nonlinear dynamics@5# using the notions of limit
cycle, torus, resonance, frequency locking, and so on. A
number of simple differential equations are known that have
limit cycle solutions to simulate neural oscillation@6#. In
some chaos, strong periodic components can be found in a
power spectrum in which almost discrete line spectrums are
embedded in a ‘‘continuous’’ band~e.g., the Ro¨ssler attractor
@7# and in the He´non-Heiles system@8#!. A periodic system
on the other hand can become chaotic through a sequence of
frequency locking in response to delivery of a periodic per-
turbation @9–11#. Conversely, as a bifurcation parameter is
changed, chaos can be replaced by periodicity, resulting in
periodic windows appearing in the bifurcation diagram
@1,12#.

Here we study a rhythmic hopping between two disjoint
domains on which our one-dimensional map is defined.
There are several examples in the literature@13–20# that
have investigated the statistical properties of hopping or the
related phenomenon of ‘‘escape’’ or ‘‘extinction’’@14,20#.
However, none of the prior works studied circumstances in
which the motion had a strong periodic component
~‘‘rhythm’’ !.

Our system, probably the simplest chaotic attractor that
can indeed generate rhythm, is constructed as follows. Take
a domain@0,2# in a one-dimensional space, two subdomains
of which are denoted asL5@0,1# andR5@1,2#. Let us con-
sider a mapxn115F(xn) consisting of two logistic maps
@21# such that

F~x!5 Hax~12x!, 0<x<1
a~x21!~x22!12, 1<x<2. ~1!

See Fig. 1. Similar one-dimensional maps have been studied
previously @16,18,19#. When a54.0, a trajectory

$xnun50,1, . . .% starting from each domain remains there
and undergoes strongly chaotic motion. Ifa.4, on the other
hand, the two otherwise disjoint regions are brought into
contact with one another, and a trajectory can wander over
the entire range in a chaotic manner. This is merely a special
case of the so-called interior crisis, first proposed by Gre-
bogi, Ott, and Yorke@22–24#.

Here a feature of time evolution is introduced into the
above map by settinga(t)54.01td, wheret is a discretized
time measured in a unit timeDt ~actuallyDt50.01!. It is in
the pioneering work of Lasota and Mackey@14# that an
evolving map was considered for the first time. They studied
an evolving logistic map having a slowly ‘‘time dependent’’
parameter such asa(t)5 r̃1e8t that is defined only in the
domainL5@0,1#, from which a trajectory escapes~with no
return! eventually after the value of the parametera exceeds
4.0. This phenomenon was called extinction@14,20# and a
beautiful analysis on the survival probability of a trajectory
in L5@0,1# was performed. In contrast to the case of extinc-

FIG. 1. A map causing an interior crisis. Unlike the ordinary
~fixed! crisis, the diameter of the escaping region grows as a func-
tion of time.
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tion, our map brings a trajectory back fromR5@1,2# to
L5@0,1#, and vice versa. For example, let a trajectory start
from an arbitrary point in, say, theL domain witha54.0. As
soon as it begins to move, we seta(t)54.01td. The positive
exponentd is fixed. Since the gate diameterf (t) through
which the trajectory can escape from domainL grows larger
~see Fig. 1!, the trajectory eventually jumps into the neigh-
boring subdomain after some finite lifetime. As soon as the
trajectory gets into the neighboring domain, everything is
reset;t50 ~the usual accumulated time is denoted byt! and
a~0!54.0 ~the gate is closed!. Then, the trajectory resumes
its course and the gate begins to open as before. In this way,
the present system generates a behavior of the so-called re-
newal process. We now coarse grain the time series
$xnun50,1, . . .% by assigning the values toL orR depending
on the domain where the trajectory stays, that isLRL-
RLR . . . . The position of the trajectory in each piece ofL
or R changes in an approximately random manner. Surpris-
ingly, however, it can make a rhythmic hopping between the
two domains in spite of the fact that no source of periodic
machinery has been installed.

Figure 2 shows two trajectoriesx~t! ~t5nDt!, for which
~a! a is fixed at 4.001 and~b! a(t)54.01td with d520. We
distinguish these two cases by terming the former and the
latter, respectively, a fixed crisis and a breathing crisis. The
points$xnun50,1,...% have been connected with straight lines
in the figure. The initial conditionsx0 are randomly selected.
A very clear distinction is noticed immediately in the two
panels: The fixed crisis displays a chaotic motion, whereas
the breathing crisis, though still somewhat chaotic, is much
more regular. We shall thus call it ‘‘soft rhythm.’’ These
characteristics are quite generic, although the measure of the
exceptional trajectories have not been determined.

The lifetime T is defined as the length of time that a
trajectory remains in the subdomainL or R. Sampling an
arbitrarily selected trajectory like the one shown in Fig. 2~b!,

one can count a distribution~or frequency! P(T) of the life-
time. Figure 3 shows three different classes ofP(T); ~a! a
fixed crisis witha54.005,~b! a breathing crisis withd52.0,
and ~c! a breathing crisis withd520.0. These distribution
functions reflect the statistical nature behind the dynamics,
and are identified as, respectively,~a! Poisson@14,19,20,26#,
~b! Wigner, and~c! Brody distributions@1,25#. Later we will
show mathematically that this assignment is indeed the case.
As will be deduced from the figure, the distribution becomes
sharper as the evolution parameterd gets larger. For the
choices ofa(t) shown in Fig. 3, it follows that a longer mean
lifetime is associated with less fluctuation inP(T), that is,
more like a periodic motion. In particular, the longer side of
the tails in the distributions becomes less marked for the
largerd system.

Figure 4~a! shows the power spectrum of the time series
of LRLRLR. . . for d52.0, and 4~b! for d520.0. It is quite
clear that the breathing crisis withd520.0 is sharply peaked,
while for d52.0 the spectrum is much more broadband.
These spectra clearly indicate that the presentrhythm is still
chaos. The second and third peaks observed in Fig. 4~b!
correspond to the third and fifth harmonics, respectively, of
the fundamental frequency. They arise because the coarse-
grained time seriesLRLRLR. . . forms a ‘‘rectangular’’
wave @see Fig. 2~b!#.

The physical meaning of the present system is very clear.
A deterministic diffusion process is materialized in the logis-
tic map fora>4.0, before the hopping takes place. Further-
more, the invariant density of the logistic map fora54.0 is
proportional to @x(12x)#21/2 in @0,1.0# ~see Ref.@1~a!#!,
which implies that a trajectory visits most of the ranges in-
cluding the gate area with similar chances. On the other
hand, the functiona(t)54.01td makes the channel open so
that the diameterf (t) is f (t)5td/2(41td)21/2'td/2/2. Thus
the chance for a trajectory to pass through the gate is typified

FIG. 2. The trajectories versus time.~a! A fixed crisis with the parametera54.001.~b! A breathing crisis ofa(t)54.01td with d520.0.
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by this single evolution parameterd into three cases: the gate
diameterf (t) is ~a! constant in time~for d50.0, Poisson!, ~b!
proportional to the time~for d52.0, Wigner!, and~c! accel-
erated as the time passes~for d.2.0, Brody!. It turns out that
only the third case leads to the soft rhythm. In other words,
the rhythm can beat only under a condition that the gate
begins to open very slowly in the early stage and later the
diameter becomes wider quickly. In fact, it has been con-
firmed numerically thatf (t) which is not exactly of the form

f (t)5td/2 can lead to soft rhythm as well, provided that the
above condition is satisfied. The present diffusion-gating
mechanism reminds us of single ion-channel recordings
@2,3,26,27#. It would be necessary, however, to combine or
embed these rhythmic elements in a large network system in
order to simulate a complicated macroscopic system.

Next we consider how the distributions ofP(T) in Figs.
3~a!–3~c! can be understood on the basis of the above physi-
cal mechanism. Since the chaotic nature of the logistic map

FIG. 3. The distributions of the lifetimes for both the domains.~a! A fixed crisis ofa54.005. The exponential curve represents the theory
~Poisson distribution!, while the ‘‘experimental’’ values, which are connected with a dotted line, deviate from the theory in the short time
region.~b! A breathing crisis ofa(t)54.01td with d52.0. The Wigner distribution expected from the theory~black squares! is so close to
the numerically obtained values~white squares! that they are almost indistinguishable.~c! A breathing crisis withd520.0. The experimental
values~crosses! are well represented in terms of the Brody distribution~circles!.

FIG. 4. Power spectra arising from the rhythmic motionsLRLRLR. . . . ~a! A breathing crisis withd52.0. ~b! The same as in~a! but
with d520.0.
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ensures that a trajectory visits any place with similar chances
@1#, P(T) is expected to be governed only by the rate of
increase of the diameter of the gate. If this is not the case,
one should take account of the anisotropic distribution of the
invariant density of a map under study. Letf (t)Dt be a
~unnormalized! probability for a trajectory to undergo a hop-
ping in the time interval@t,t1Dt#, since the probability of
hopping should be proportional to the diameter of the gate
f (t). Also, let g(t)Dt be the probability for which hopping
does not take place until timet ~assuming the preceding
hopping took place att50! and does in@t,t1Dt#. Then it
follows that:

g~ t !Dt5@12 f ~0!Dt#@12 f ~Dt !Dt#

3@12 f ~2Dt !Dt#•••$12 f @~N21!Dt#Dt%

3 f ~ t !Dt, ~2!

with Dt5t/N and that

ln g~ t !5 lim
N→`

(
j50

N21

ln@12 f ~ jDt !Dt#1 ln f ~ t !

>2E
0

t

ds f~s!1 ln f ~ t !, ~3!

wheref ( jDt)Dt!1 has been used. Equation~3! is rewritten
as

g~ t !5 f ~ t !expS 2E
0

t

ds f~s! D . ~4!

Inserting f (t)'td/2/2, we finally have g(t)}
td/2exp@2t (d/2)11/(d12)#. Thusd50 @Fig. 3~a!#, d52 @Fig.
3~b!# and d520 @Fig. 3~c!# give, respectively, the Poisson,
Wigner, and Brody distributions. As can be confirmed in
these figures, the numerically obtained distributions lie very
close to the theoretical curves.

We have constructed a simple element of chaos that can
generate a soft rhythm by allowing two logistic maps to
come into contact dynamically, which we have called the
breathing crisis. The mechanism and conditions giving rise
to the soft rhythm have been discussed. The present study
suggests that the dynamical contact of the arbitrary strange
sets ~attractors! can generate various types of rhythm. Al-
though the focus of the present research has been placed on
an aspect of chaotic dynamics, particularly on the new prop-
erty of the interior crisis, the present system might lay a basis
to interpret many renewal processes such as earthquake and
rhythmic events in physical and biological sciences.
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